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  Abstract: In this paper a three-dimensional pollution defensive 

model with two time delays in the Chemical Industrial Area (CIA) 

is considered. The model is based on the interaction among 

chemical firms, pollution and capital stock in the CIA. The profit 

from chemical products is used for both defensive expenditure and 

an increase in capital stock. It shows that Hopf bifurcation occurs 

at the equilibrium point when the time delay reaches that point or 

the pollution defensive against the impact of chemical production 

is insufficient. In other words, if we do not guard against pollution 

sufficiently or control the production of chemical firms, it will lead 

to destabilization. Numerical simulations are given to illustrate the 

results. 
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1. Introduction 

Recent literature has demonstrated complicated relations 

between environment and capital. Becker [1] has examined 

the trade-off between capital accumulation and 

environmental quality through an analysis of regular 

maximum programs in the framework developed by Brock. 

The result is a constant utility path supported by 

government-imposed effluent charges and environmental 

rentals, sufficient conditions for a regular maximum path to 

satisfy the Hartwick Rule in calculating the combination of 

capital and environmental quality left for future generations. 

Similarly, a dynamic general equilibrium model based on 

environmental resources has been developed in a small open 

economy [2]. The result shows that the level of consumption 

and the fraction of income devoted to maximize the 

long-run welfare depend on both consumption level and 

environmental quality. Furthermore the possibility that both 

consumption and production affect the environment has 

been taken into account [3]. Consider the 

endogenous-growth model with physical and human capital 

accumulation [4]: the result shows that parameters on 

preferences, technologies and depreciation rates as well as 

fiscal policy are relevant to determine qualitatively the 

dynamic behavior of the economy. This paper considers a 

three-dimensional environmental defensive expenditures’ 

model with time-delay bases demonstrating the interaction 

among visitors, quality of ecosystem goods and capital in 

protected areas [5].  

 This paper formulates a simple model with a unique 

positive equilibrium (when it exists) among the variable of 

state considered;moreover, this equilibrium is always stable. 

The aim of this work is to analyze how the stability of the 

equilibrium changes when two time-delays are considered 

because the dynamics of the pollution and capital stock at 

time t  depend on the profits of chemical production. In 

this model, we can see how such stability changes give rise 

to the Hopf bifurcation when time-delay passes through a 

sequence of critical values. The Hopf bifurcation allows us 

to find the 

existence of a region of instability in the neighborhood of a 

fixed point where the manager of the CIA can stabilize the 

system if the time-delay is sufficiently short, but the model 

will become unstable when time delay is too long.  

This paper is organized as follows: in Section 2 the model 

is presented; in Section 3 the fixed point, stability analysis 

and the existence of Hopf bifurcation are presented; and in 

Section 4, numerical simulations are presented. 

2. The Model 

The model, referring to the generic Chemical Industrial 

Area (CIA), has three variables: the production of chemical 

firm V( t )  in the CIA, the pollution P( t )  and the capital 

stock K( t )  intended as structures. 

2.1 The productionV : 

2 2V(t ) aK( t ) bP ( t ) cV ( t )             (1) 

 That parameter 0a   represents the production of unit 

capital stock, and P( t )  the current pollution. With the 

pollution growing, the production will decease; hence the 

coefficient is b . The production of the CIA never grows 

continuously, and then, c represents recession coefficient. 

2.2 The pollution P : 

Following Becker [1] and Cazzavillan and Musu [6], the 

pollution is defined as less than the maximum tolerable 

pollution P : that is, 0 P( t ) P   

We assume that a constant proportion 0 1r   of the 

pollution is assimilated at each time t . Moreover, supposing 

that the pollution P increases in proportion to the production 

V of the CIA, the increase coefficient is d . When no 

resources are devoted to abatement expenditure, the CIA 

influences the pollution only by controlling production
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V( t ) . 

P(t ) dV( t ) rP( t )                   (2) 

Chemical production makes a positive impact on this 

pollution. Therefore, chemical firms use a share 0 1ρ  of 

their profit to defend the environmental resources in the CIA 

in which the profit of one unit product is n .This expenditure 

is directly proportional to the pollution. Therefore, the 

dynamics of the pollution is 

P(t ) dV( t ) rP( t ) mnρV( t )            (3) 

The parameter 0m   is a constant parameter 

determining how an additional unit of defensive expenditure 

decreases the pollution. 

2.3 The capital stock K : 

The other share 1( ρ ) of the total profit of chemical 

product is used to increase capital stock 

1K(t ) n( ρ )V( t ) δK( t )               (4) 

Capital stock is assumed to depreciate at the rate 0δ  . 

Considering two time delays, the model is formulated as 

follows: 
2 2

2

21

1

1

1

V( t ) aK( t ) bP ( t τ ) cV ( t )

P( t ) dV( ) rP( t τ ) mnρV( t τ )

( t )

t τ

K n ρ( ) (V t ) ( t )τ δK





   

   

   



      (5) 

3. Qualitative Behavior of the Model 

3.1 The equilibrium point: 

It’s easy to know that the equilibrium points are 

these: 
0 0 0 0F ( , , ) ,  F (V ,P ,K )   

 
where 

2

2

1 1anr ( ρ ) d mnρ n( ρ )
V ,P V ,K V

r δbδ( d mnρ ) cδr

      
  

 
 

 

Obviously, V ,E  and K  are only determined by the 

model (5), and they are always positive, if 0( d mnρ )  . 

3.2 Stability analysis: 

The linearization of the model in the neighborhood 

of the positive equilibrium F  yields:  

1 2

1 2 1 3 2

1 2

V t V V V t τ V V( t τ ) V

P t η P P η P t τ P η P( t τ ) P

K t K K K t

( ) ( t ) ( )

( ) ( t ) ( )

( ) ( t τ K K( t τ ) K) ( )

  

  

  

           
       

              
                  

  (6) 

where 

1

0 0

0 0 0

0 0

a

η

δ

 
 

  
  

, 1

1

2

2 0 0

0 0

1 0 0

λτ

λτ

cV

η ( d mnρ )e

n( ρ )e







 
 

  
  

2

2

3

0 2 0

0 0

0 0 0

λτ

λτ

bP e

η re





 
 

  
 
 

 

So the characteristic equation of model (5) is
1 2

1 2 3 0
λτ λτ

det( λI η η e η e )
 

    ,  

which leads to 
1 2 1 2

1 2 0
λ( τ τ ) λτ λτ

D( λ,τ ,τ ) S( λ )e R( λ )e Q( λ )e P( λ )
   

    

               (7) 

where 

       

2 1

1

2

2

S( λ ) bP ( λ δ )( d mnρ ) anr( ρ );

R( λ ) anλ( ρ );

Q( λ ) r( λ δ )( λ cV );

P( λ ) λ( λ δ )( λ cV );







    

  

  

  

 

3.3 The case 1 2 0τ τ  : 

So, the characteristic polynomial is 

  
3 2

0 1 20 0 0D( λ, , ) S( λ ) R( λ ) Q( λ ) P( λ ) λ A λ A λ A        

             (8) 

where  

      

0

1

2

2

2 2 1

2 1 2

A cV δ r;

A cV ( r δ ) bP ( d mnρ ) rδ an( ρ );

A bδP ( d mnρ ) anr( ρ ) crδV ;



 

 

  

      

    

 

According to the Routh-Hurwitz criterion [8], the 

equilibrium point is stable if, and only if 

1H : 0 0A   0 1 2 0A A A  ;  

3.4 The case 1 20 0τ ,τ  : 

Let 2 0τ   in Eq. (7), the characteristic polynomial 

becomes 

 
1

1

1

3 2

0 1 2 3 4

0

0

λτ

λτ

D( λ,τ , ) [ S( λ ) R( λ )]e Q( λ ) P( λ )

λ B λ B λ B [ B λ B ]e





   

      
     

  (9) 

where 

         

0

1

2

3

4

2

2

2

2 1

2 1

B r δ cV ;

B cV ( r δ ) rδ;

B crδV ;

B bP ( d mnρ ) an( ρ );

B bδP ( d mnρ ) anr( ρ );











  

  



   

   

 Theorem 1. Eq. (9) has a unique pair of purely imaginary 

roots if 2 4 2 4 0( B B )( B B )    

Proof: If 0λ iω,ω   is a root of (9), separating real and 

imaginary parts, there will be the following equations: 
2

0 2 4 3

3

1 3 4

B ω B B cosωτ B ωsinωτ

ω Bω B ωcosωτ B sinωτ

   


  
            (10) 

Squaring and adding both equations above 
6 4 2

1 2 3 0ω Qω Q ω Q                    (11) 
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where 

   2 2 2 2 2

1 0 1 2 1 0 2 3 3 2 42 2Q B B , Q B B B B , Q B B        

  leads to: 
2

1 0 1

2

2 2 2 2

2

2 2 2 2 1

4 2 1 0

Q B B

(δ r cV ) ( δr crV cδV an( ρ ))

c V δ r an( ρ )

  



 

       

     

  (12) 

 
2 2

3 2 4 2 4 2 4 0Q B B ( B B )( B B )                 (13) 

Then the conditions of this theorem imply that there is a 

unique positive root 0ω  satisfying Eq. (9). That is, it has a 

unique pair of purely imaginary roots 0iω . 

From Eq. (10) 1nτ can be obtained 

4 2

1 3 0 0 4 1 3 0 2 4

1 2 2 2

0 04 3 0

1 2

0 1 2

n

B ω ( B B B B )ω B B kπ
τ cos

ω ωB B ω

k , , ,...

   
 





            

(14) 

 

Theorem 2. If the following conditions 

2H : 2 4 2 4 0( B B )( B B )   ; 0 1 3 2 4B ( B B ) B B   ;

2 2 2 2

1 0 2 4 2 32( B B B )B B B  ; 

hold, model (5) undergoes Hopf bifurcation at 

F (V ,E ,K )     when 
10τ τ ; furthermore, F  is locally 

asymptotically stable if 
1 100τ [ ,τ ) , but unstable if 

1 10τ τ . 

Proof. It has been proved that, when 1 0τ  , all roots of Eq. 

(7) have negative real parts: that is to say, the equilibrium 

F   is locally stable for 1 0τ  . Subsequently, when 1 10τ τ , 

F  is still stable. 

Then, if

10
1

0

τ τ

dλ
Re

dτ


 
 

 
, it indicates that when 1 10τ τ , 

at least a characteristic root with a positive real part will 

exist. According to the conditions of Hopf bifurcation 

theorem, the periodic solutions will occur when 1 10τ τ . 

Differentiating Eq. (9) with 1τ , it is as follows: 

1 1

1

2

0 1 3 1 3 4

1

3 4

3 2
λτ λτ

λτ

dλ
[ λ B λ B B e τ ( B λ B )e ]

dτ

λ( B λ B )e

 



    

 

     (15) 

that is, 

1

1
2

0 1 1

1 3 4

2

0 1 3 1

3 2

3 40 1 2

3 2

3 2

λτ

λ B λ B τdλ

dτ λλ( B λ B )e

λ B λ B B τ

λ( B λ B ) λλ( λ B λ B λ B )





   
  

 

 
   

  
      (16) 

 

Thus, 
1

2

1 0 3

2 2

1 2 0 1 3 4

2 6 2 2 2 2 4 2 2 2 2 2 2 2 2

3 4 0 3 1 3 0 1 4 1 4 2 3 0 2 4

2 2 2 2 2 2 2

1 2 0 3 4

3 2

2 3 2 2 4 2

λ iω

B ω i B ω Bdλ
Re Re

dτ iω[( B B ω ) iω( B ω )] iω( iB ω B )

B ω ( B B B B B )ω ( B B )B ω ( B B B B B B B )
Re

[ω ( B ω ) ( B B ω ) ][( B ω ) B ]





    
    

      

        
  

    

  

We can rewrite the numerator as follows.  

2 6 2 2 2 2 4

3 4 0 3 1 3

2 2 2 2 2 2 2 2

0 1 4 1 4 2 3 0 2 4

2 3 2

2 4 2

f (ω ) B ω ( B B B B B )ω

( B B )B ω ( B B B B B B B )

   

         (17) 

Let 2η ω , then 
2 3 2 2 2 2 2

3 4 0 3 1 3

2 2 2 2 2 2 2

0 1 4 1 4 2 3 0 2 4

2 3 2

2 4 2

G( η ) f (ω ) B η ( B B B B B )η

( B B )B η ( B B B B B B B )

    

          (18) 

and 
2 2 2 2 2 2 2

3 4 0 1 3 0 1 42 3 3 2 2G'( η ) [ B η ( B ( B B )B )η ( B B )B ]     

                     
(19) 

for  G' η , 

2 2 2 2 2 2 2

4 0 1 3 0 1 3 4

2 2 2 2

4 0 1 3

3 2 12 2

3 2 0

( B ( B B )B ) ( B B )B B

[ B ( B B )B ]

     

        (20) 

G'  has two real roots, which take the for

 2 2 2

4 0 1 3

1 2

3

3 2
0

6

( B ( B B )B )
η

B

   
  ,

2 2 2

4 0 1 3

1 2

3

3 2
0

6

( B ( B B )B )
η

B

   
 

 

   From the above, clearly G'( η )  increases 

monotonously in 1( η , ) . As far as concerned that

2 2 2 2 2

1 4 2 3 0 2 40 2 0f ( ) B B B B B B B ,     there will be

0f (ω)  , for 0ω  , and it will have: 

1 1

1

1

1 1

0

nτ τ
λ iω

d(Re λ( τ )) dλ
sign sign Re

dτ dτ






 
  

 
     (21) 

Theorem2 states that when these conditions obtain, the 

Hopf bifurcation will occur while 10τ is the minimum 1nτ at 

which the real parts of these roots are zero. That is to say, 

the model undergoes Hopf bifurcation at the equilibrium 

F 
 when 1 10τ τ , and, regarding the impact of production 

on pollution, the defensive expenditures is not elevated. In 

other words, if the pollution is not sufficiently decreased, it 

will reach one destabilization at the fixed points when

1 10τ τ . 

 

Theorem 3:  For Eq. (9), it can refer to: 

If 1H and 2H hold, when 1 100τ [ ,τ )  all roots of Eq. (9) 

have negative real parts, and when 1 10τ τ
 

Eq. (9) will have 

at least one root with positive real part. 

Proof: As 1H and 2H hold, then the equilibrium of the 

Eq.(9) is stable and Eq.(9) has complex roots with negative 

real parts for 1 0τ  , and also for 1 10τ τ
.
 Eq.(9) has purely 

imaginary roots, and the real parts of the root changes 

continuously with the increase of 1τ because of 

 

1 1

1

1

0

nτ τ

d(Re λ( τ ))
sign

dτ


 , so for 1 100τ [ ,τ ) all roots of 

Eq.(9) have negative real parts and Eq.(9) has at least one 

root with positive real parts when 1 10τ τ . 

3.5 The case 1 20 0τ ,τ  : 
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Next, we return to the Eq. (7) with
2 0τ  and

1τ in 

stable regions. Regard 2τ as a parameter following 

Ruan and Wei [10] 

 

Theorem 4: If all roots of Eq. (9) have negative parts for

1 0τ  , then there will exist a
2 1 0τ ( τ )  , subject to all roots 

of Eq. (7), and it will have negative real parts when

2 2 10 τ τ ( τ )  . 

Proof. Following the theorem2.1 of Ruan and Wei, the left 

of Eq.(7)is analytic in λ and 2τ , and when 2τ varies, the sum 

of the multiplicities of zeros of the left of Eq.(7) in the open 

half-plane will change only if a zero is on, or crosses, the 

imaginary axis. 

 

Theorem 5: Assume 1H holds true; if 2H holds, there exists

10 100 τ τ  and
2 2 1τ τ ( τ ) , then for any

1 100τ [ ,τ ) ,the 

equilibrium of model (5) is locally asymptotically stable 

when
2 2 10τ [ ,τ ( τ )) . 

Proof. According to Theorem3 and Theorem4, there will be 

a result. 

It’s clear that the Hopf bifurcation occurs at 2 1τ ( τ )  if it 

holds the conditions of Theorem 4 or Theorem 5 and, also, 

there may be a lot of stability-switches. If 1τ is in an 

unstable region, there may not exist
2 1τ ( τ )  which makes 

the model (5) stable if
2 2 10 τ τ ( τ )  , but unstable if

2 1 1τ τ ( τ ) . 

4. Numerical Simulation 

This section shows some numerical simulations at 

different value of 1τ  and 2τ . 

Considering system (5) with the following parameters

4a  , 0.5b  , 0.1c  , 0.9d  , 0.1r  , 1n  , 0.8  ,

1m  , 0.1  , initial values 2, 1, 3V P K   , the 

conditions of Theorem 1,2 hold.  Supposing 0.8  , the 

fixed point is  13.75,13.75,27.50F  .  

4.1 The case 1 20 0τ ,τ   

There is 0 0.1445  , 10 12.6813   period 

43.4782T  .  

 
Fig 1when 2 0τ  and

1 1010τ τ   

 
Fig2:when 2 0τ  and 1 1010τ τ   

 

Figures1,2 show that when 2 0τ  and 1 1010τ τ  , the 

chemical production, the pollution and the capital stock tend 

to be stable. 

 

Figures3,4 show that when 2 0τ  and 1 1014τ τ  , the 

chemical production, the pollution and the capital stock tend 

to be periodic solutions.  

 

 

 
Fig3: when 2 0τ  and 1 1014τ τ   
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Fig4: when 2 0τ  and

1 1014τ τ   

4.2 The case 1 20 0τ ,τ      

 
Fig5: when 1 105 7τ . τ  and 2 2 10 7τ . τ ( τ )   

 
Fig6:when 1 105 7τ . τ  and 2 2 10 7τ . τ ( τ )   

Figures5,6 show that when 1 105 7τ . τ   and

2 2 10 7τ . τ ( τ )  , the chemical production, the pollution 

and the capital stock tend to be stable. 

 
Fig7: when 

1 105 7τ . τ   and 
2 2 11 0081 τ )τ . τ (   

 
Fig8: when 

1 105 7τ . τ   and 
2 2 11 0081 τ )τ . τ (   

     

5. Conclusion 

The present work, starting from a simple model with a 

positive equilibrium, shows that a delay may generate 

instability and, as a consequence, problems in the 

sustainability of the CIA’s decision if the condition 

0( d mnρ )   occurs: that is, the pollution defensive 

expenditure is not elevated sufficiently. Furthermore, if the 

conditions (1) 0(C E )(C E )   ; (2) A( B D ) C E   ; (3)
2 2 2 22( B AC )E C D  hold, 

1 10  , the Hopf bifurcation 

occurs but, then, if 2 0τ  and 1τ exist in stable regions, it’s 

clear that Hopf bifurcation will occur at 2 1τ ( τ )  if the 

conditions of Theorem 4 or Theorem 5 hold. Further 

developments can be identified or analyzed in a model with 

two variable delays. 
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